3M™ Thermal Management Materials for Automotive Batteries

Electrical Vehicle (EV) and Hybrid Electrical Vehicles (HEV)

July 2015
Keys to Effective Thermal Interface Material Performance

A balanced combination of wet-out and bulk material conductivity (k) is key to effective thermal (R) solution.

Select bulk material (k) based on desired:
- Softness
- Conformability
- Gap Thickness
- Adhesion
- Wet-Out
- Effective Thermal
- Resistance (R)

$$Q = \frac{(k/t) \cdot A \cdot dT}{t}$$

Q: Heat flow watts

k: Thermal conductivity W/m-k

A: Area (100% wet-out) $x \%$ wet-out

t: Thickness

dT: Temperature hot side – Temperature cold side

Helps eliminate air at interface
Thermal Interface Material Options

<table>
<thead>
<tr>
<th>Technology</th>
<th>Thermal Conductivity vs. Air*</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease</td>
<td>20-185X</td>
<td>Thin, low cost
Thin=Low Impedance
Good wetting</td>
<td>Messy
No adhesion so needs mechanical attach</td>
</tr>
<tr>
<td>Liquids</td>
<td>20-125X</td>
<td>Thin=Low Impedance
High bond strength
Good wetting</td>
<td>Messy
Pot life of epoxy
Need cure time and fixturing</td>
</tr>
<tr>
<td>Phase Change</td>
<td>20-125X</td>
<td>Good wet-out
Less messy than grease
Thin=Low Impedance</td>
<td>No adhesion
Needs mechanical attach
Need initial heat cycle</td>
</tr>
<tr>
<td>Tapes</td>
<td>20-40X</td>
<td>Good wet-out
No mechanical fasteners
Ease of use</td>
<td>Typically <10-15W applications</td>
</tr>
<tr>
<td>Pads</td>
<td>35-200X</td>
<td>Greater thicknesses
Very soft/conformable
Gap filling</td>
<td>Light adhesion
Needs mechanical fastener
Cost</td>
</tr>
<tr>
<td>Solder/Liquid Metal Phase Change Material</td>
<td>500-1000X</td>
<td>Thin thickness
High conductivity
Gap filling</td>
<td>Difficult to apply
Low viscosity when melted
CTE
Cost</td>
</tr>
<tr>
<td>Heat Spreading Tapes</td>
<td>100-1000X</td>
<td>Value Heat Spreader vs. Graphite
Conformable, Easy to die cut, No Splitting from rework</td>
<td>Typically 80-90% performance of Graphite Thermal Tape</td>
</tr>
</tbody>
</table>

*Air Thermal Conductivity = 0.02 W/m-K
Green denotes 3M Options
3M™ Thermal Management Materials

Thermally Conductive Interface Tape

Thermally Conductive Interface Pad (Silicone and Acrylic)

Thermally Conductive Grease

Thermally Conductive Adhesives

Thermally Conductive and Heat Spreading Tape

© 3M 2015. All Rights Reserved.
3M™ Thermally Conductive Interface Materials
Level One Solutions (Tapes, Pads, Greases & Epoxies)

TIM – Tapes
K = 0.2 ~ 1.5 W/m-K

- Good thermal conductivity
- Various thickness (0.05 mm ~ 1 mm)
- Adhesions for various surface
- UL flame resistance option
- Good wet out for lower thermal resistance
- Good dimensional stability
- Good dielectric strength

TIM – Pads
K = 1.0 ~ 4.9 W/m-K

- Good thermal conductivity
- Various thickness (0.5 mm ~ 1 mm)
- Various softness
- UL flame resistance option
- Softness for good wet-out
- Good dimensional stability
- Dielectric strength

TIM – Grease
K = 2.7 ~ > 4.1 W/m-K

3M™ Thermally Conductive Grease TCG-2035/TCG-2031
- High thermal performance, higher viscosity, high value
- K= 4.1 W/m-K
- TCG-2031: screen printable version of TCG-2035

3M™ Thermally Conductive Grease TCG-2036
- Good thermal performance, thin bonding line, lower thermal impedance
- K = 2.7 W/m-k

TIM – Epoxy
K = 0.7 ~ 1.1 W/m-K

- Good bonding strength
- Long term reliability
3M™ Thermally Conductive Interface Pads
(Acrylic and Silicone)

<table>
<thead>
<tr>
<th></th>
<th>Acrylic</th>
<th>Thermal Conductivity</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5570</td>
<td>1.3 W/m-K</td>
<td></td>
<td>Non-Silicone, Acrylic, V-0</td>
</tr>
<tr>
<td>5574</td>
<td>1.5 W/m-K</td>
<td></td>
<td>Non-Silicone, Acrylic, V-0</td>
</tr>
<tr>
<td>5589H/5571</td>
<td>2.0 W/m-K</td>
<td></td>
<td>Non-Silicone, Acrylic, V-0</td>
</tr>
<tr>
<td>5590H/5567H</td>
<td>3.0 W/m-K</td>
<td></td>
<td>Non-Silicone, Acrylic, V-0</td>
</tr>
<tr>
<td>5578H</td>
<td>3.5 W/m-K</td>
<td></td>
<td>Non-Silicone, Acrylic, V-0</td>
</tr>
<tr>
<td>5591(S)</td>
<td>1.0 W/m-K</td>
<td></td>
<td>Ultra-soft, Silicone, V-0</td>
</tr>
<tr>
<td>5592(S)</td>
<td>1.1 W/m-K</td>
<td></td>
<td>Soft, Silicone, V-0</td>
</tr>
<tr>
<td>5595(S)</td>
<td>1.6 W/m-K</td>
<td></td>
<td>Soft, Silicone, V-0</td>
</tr>
<tr>
<td>5514/5515(S)</td>
<td>1.6/3.0 W/m-K</td>
<td></td>
<td>Very Thin, Silicone, V-0</td>
</tr>
<tr>
<td>5516(S)/5519(S)</td>
<td>3.1/4.9 W/m-K</td>
<td></td>
<td>Soft, Silicone, V-0</td>
</tr>
</tbody>
</table>
3M™ Thermally Conductive Interface Thin Tape (50 um, 100 um, 200 um, 250 um)

<table>
<thead>
<tr>
<th></th>
<th>8802</th>
<th>8708-013</th>
<th>8805</th>
<th>8904-02</th>
<th>TM-670SA</th>
<th>8904-025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>0.05</td>
<td>0.13</td>
<td>0.13</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m-k)</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>1.5</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Adhesive Strength (90° peel) (Kg/inch)</td>
<td>1.1 (180° peel)</td>
<td>4</td>
<td>1.6</td>
<td>2</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>High temp stability(°C)-Long term</td>
<td>90-100 °C</td>
<td><110 °C</td>
<td>90-100 °C</td>
<td>80-90 °C</td>
<td><110 °C</td>
<td>80-90 °C</td>
</tr>
<tr>
<td>Flame retardant/UL</td>
<td>NA</td>
<td>UL 94 FR V2</td>
<td>UL 746C*</td>
<td>UL 94 FRV0</td>
<td>NA</td>
<td>UL 94 FRV0</td>
</tr>
<tr>
<td>Special characteristic</td>
<td>Single liner, Thinner version of 88XX</td>
<td>Diff adhesion, Higher adhesion</td>
<td>Conformable</td>
<td>Not stretchable, Easy handling, High thermal K</td>
<td>Diff adhesion, Higher adhesion</td>
<td>Not stretchable, Easy handling, High thermal K</td>
</tr>
</tbody>
</table>
3M™ Thermally Conductive Heat Spreading Tapes (9876, 9877 and 9879)

Advantages

• Tapes designed to offer preferential XY thermal spreading vs. Z axis heat flow
• Cost effective “XY thermal flow vs. $$” in comparison to graphite type thermal spreading solutions
• Easy die cut to shape

Typical applications

• Thermal spreading on lighting and electrical recharger module, LED module board
• Thermal spreading of skins/cases of mobile, tablet, notebook and other consumer electronic devices
• Potential for thermal spreading on ECU, solar cell, 2nd battery assembly
3M™ Thermally Conductive Heat Spreading Tape (9876, 9877 and 9879)

Application consideration
• Target thermal performance in planar direction
• Application thickness (50 um, 80um, 100 um, 150 um & any custom thicknesses)
• E-grounding requirement
• Surface color requirement (Black, Brown, White and Pink)
• Single coated adhesion or double coated adhesion

Product list
• 9876B-05 (0.05 mm)
• 9876B-08 (0.08 mm)
• 9876-10(0.10 mm)
• 9876-15(0.15 mm)
• 9877-05(0.05 mm) – Graphine powder coated for better thermal spreading
• 9879B-05X(0.05 mm) – E-grounding with a micro comply liner
3M™ Thermal Management Materials

Applications for Electrical Vehicle (EV) and Hybrid Electrical Vehicles (HEV)
1. Heat management between cells
 - Distributes heat generated in cells
 - Dielectric strength and long term stability

2. Thermal management between cells / case and heat sink
 - Dissipates heat between cells / case and heat sink
 - Dielectric strength and long term stability

3M™ Thermal Management Materials
EV & HEV Battery Assembly – Level One Solutions

3M™ Thermally Conductive Interface Pads
(5589H, 5590H, 5570, 5571, 5574, 5595S)
3M™ Thermal Management Materials
EV & HEV Battery Assembly – Level Two

3. Thermal management between cells / case and heat sink

- Dissipates heat of cells / case and heat sink
- Dielectric strength, anti-abrasion
- Cushioning / Damping
- Various thicknesses
- 3M™ Thermally Conductive Interface Pads 5589H, 5590H, 5571 and 5595S

PET film (22μm)

1.5mm t

3M™ Thermally Conductive Interface Pad (thickness: 1.5 mm)

Heat Sink Plate

Anti-Abrasions
3M™ Thermal Management Materials

EV & HEV Battery Assembly – Level Three

- Thermal management between cells
- Dielectric strength and high temp resistance
- 3M™ Thermally Conductive Interface Tapes (88XX series, 8940 and 8943)
- 3M™ Thermally Conductive Interface Pads

- Fixing battery cell and thermal management of Li-ion battery
- Low viscosity, lower curing, FR
- Dielectric strength, high temp resistance
- Adhesives, resin and potting types
- 3M™ Thermally Conductive Epoxy Adhesives (TC-2810 and TC-2707)
- 3M™ Thermally Conductive Polyurethane Potting Adhesive (TC-2920F)
3M™ Thermal Management Materials
EV & HEV Battery Applications – Level Four

• In-vehicle battery charger and motor assembly
• Low viscosity prior to curing
• Short curing time
• Good thermal K
• High temp resistance (120°C)
• Optional flame resistance (FR)
• High dielectric strength
• 3M new product initiative (potting)
3M™ Thermally Conductive Interface Pad 5517 (Clay Type)

Features and Benefits
- Non-restorable shape
- Flexible to fit the space
- Excellent softness and conformability even to non-flat surfaces
- Surface tack allows pre-assembly

Applications
- Gap filling
- Vibration damping and TIM

Typical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>1.0, 1.5, 2.0</td>
<td>-</td>
</tr>
<tr>
<td>Color</td>
<td>Sky Blue</td>
<td>Visual</td>
</tr>
<tr>
<td>Density</td>
<td>3.17 g/cm²</td>
<td>D6111*</td>
</tr>
<tr>
<td>Hardness</td>
<td>30-35</td>
<td>D2240* (Shore00)</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>4.1 kV/mm</td>
<td>D149*</td>
</tr>
<tr>
<td>Thermal Conductivity (in-plane)</td>
<td>3 W/m-K</td>
<td>C1113* (Hot Wire)</td>
</tr>
</tbody>
</table>

Tested in Accordance with ASTM
3M Thermal Solutions for EV/HEV Applications

<table>
<thead>
<tr>
<th>Product Family</th>
<th>3M Product No.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M™ Thermally Conductive Interface Tapes</td>
<td>8810, 8815 8940, 8943</td>
<td>Thin thickness available High temp resistance Long term stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Thermally Conductive Interface Pads</td>
<td>5570, 5574 5589H, 5571 5590H, 5567H 5578H 5595S</td>
<td>Good thermal conductivity Both acrylic and silicone resins available Various thickness PET/PI lamination options High temp/FR/dielectric strength/long term stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Thermally Conductive Polyurethane Potting Adhesives</td>
<td>TC-2920F NPI</td>
<td>Insulation Different curing profile High temp resistance (120~165°C) High dielectric strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Thermally Conductive Epoxy Adhesives</td>
<td>TC-2810 TC-2707</td>
<td>Good thermal conductivity Good bonding strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Thermally Conductive and Heat Spreading Tapes</td>
<td>9876 9877 9879</td>
<td>Good thermal spreading Lighter Thin thickness</td>
</tr>
</tbody>
</table>
Features of Silicone Pad vs. Acrylic Pad

<table>
<thead>
<tr>
<th></th>
<th>Silicone Pad</th>
<th>Acrylic Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softness / Conformability</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>Up to 5</td>
<td>Up to 4</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Heat Resistance</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Flame Retardancy</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>R/M Cost</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Key Advantage</td>
<td>HT Reliability / Softness</td>
<td>No Siloxane VOC & No Oil Bleeding / Lower Cost</td>
</tr>
</tbody>
</table>

© 3M 2015. All Rights Reserved.
Important Notice

Regulatory: For regulatory information about these products, contact your 3M representative.

Technical Information: The technical information, recommendations and other statements contained in this document are based upon tests or experience that 3M believes are reliable, but the accuracy or completeness of such information is not guaranteed.

Product Use: Many factors beyond 3M’s control and uniquely within user’s knowledge and control can affect the use and performance of a 3M product in a particular application. Given the variety of factors that can affect the use and performance of a 3M product, user is solely responsible for evaluating the 3M product and determining whether it is fit for a particular purpose and suitable for user’s method of application.

Warranty, Limited Remedy, and Disclaimer: Unless an additional warranty is specifically stated on the applicable 3M product packaging or product literature, 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY IMPLIED WARRANTY OR CONDITION ARISING OUT OF A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. If the 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M’s option, replacement of the 3M product or refund of the purchase price.

Limitation of Liability: Except where prohibited by law, 3M will not be liable for any loss or damage arising from the 3M product, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including warranty, contract, negligence or strict liability.
Thank you
3M™ Thermally Conductive Interface Materials
Level Two Solutions (Heat Spreaders)

- Synthetic Graphite
- Metal Based
 - Heat spreading
 - Thin and various colors
 - Heat spreading + Heat insulating
 - Heat spreading + E-conductive
 - Heat spreading
 - E-grounding designed to protect circuits from static, surge, other e-shock etc.
 - Airless lamination with micro-comply liner (depending on user requirements)

- 3M™ Thermally Conductive and Heat Spreading Tape 9876
- 3M™ Thermally Conductive and Heat Spreading Tape 9877
- 3M™ Thermally and Electrically Conductive Hybrid Tape 9879